Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Передача данных по сетям. Основные протоколы сети Интернет». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
Передать данные очень просто. Если требуется согласие, то его нужно дать в письменной форме или в виде электронной записи. Однако учтите, что регистрируясь на сайте интернет-магазина, нельзя передавать пин-коды карты.
Передача ПД работников третьим лицам
Работодатель обязан «не сообщать ПД работника третьей стороне без письменного согласия работника, за исключением случаев, когда это необходимо в целях предупреждения угрозы жизни и здоровью работника, а также в других случаях, предусмотренных законом» (абз. 2 ст. 88 ТК РФ).
Работодатель должен получить от работника письменное согласие на передачу его ПД третьему лицу. В согласии нужно обязательно указать реквизиты компании (ИП), которой передаются ПД работника: наименование компании (Ф.И.О. ИП), ОГРН (ОГРНИП), ИНН, адрес места нахождения.
Если работник не дал своего согласия, передача его ПД третьему лицу невозможна. Но есть исключения: передача данных в ПФР, ФСС, налоговые органы, по мотивированному запросу органов прокуратуры и внутренних дел, по запросу суда и т.д. Не нужно брать согласие работника и в случаях, связанных с исполнением им своих должностных обязанностей, в том числе при направлении работника в командировку1. Например, когда нужно купить авиабилеты, забронировать номер в гостинице и т.д. Другой пример – работодатель передает клиенту Ф.И.О. и номер телефона работника-курьера, который должен доставить посылку.
Остальные случаи передачи ПД без согласия будут нарушением закона. Например, когда работодатель передает ПД работника в охранную организацию для оформления пропуска.
Работодатель обязан «не сообщать ПД работника в коммерческих целях без его письменного согласия» (абз. 3 ч. 1 ст. 88 ТК РФ).
Комментарии компетентных органов о применении данного положения закона отсутствуют. Исходя из нашей практики, речь идет не столько о передаче ПД работников третьим лицам, сколько о размещении этих данных на сайте, в рекламных материалах для привлечения клиентов, а также иных действиях работодателя, направленных на увеличение прибыли. Согласие работника здесь также необходимо, поскольку размещение его ПД на сайте не связано с исполнением им своих должностных обязанностей. Примером нарушения данного положения Трудового кодекса является ситуация, когда коммерческие, медицинские и учебные организации публикуют на своих сайтах биографии сотрудников без их согласия.
Работодатель обязан «предупредить лиц, получающих ПД работника, о том, что эти данные могут быть использованы лишь в целях, для которых они сообщены, и требовать от этих лиц подтверждения того, что это правило соблюдено. Лица, получающие ПД работника, обязаны соблюдать режим секретности (конфиденциальности)» (абз. 4 ст. 88 ТК РФ).
Речь идет о случаях, когда работодатель получает требование о предоставлении ПД работников от организаций, у которых нет права по закону получать такие данных без согласия работника2. Например, работодателю поступил запрос от другой компании, в которой его сотрудник работает по совместительству. В этом случае работодатель по основному месту работы обязан получить согласие работника, а также требовать от организации соблюдения конфиденциальности и использования полученных ПД только в целях, для которых они предоставлены.
В законе не указано, как именно должно оформляться требование о соблюдении конфиденциальности. На практике подписывается соглашение о конфиденциальности или работодатель получает от компании гарантийное письмо.
Иная ситуация, когда ПД сотрудника передаются в целях исполнения договора. Например, при передаче данных работников бухгалтерам на аутсорсе. Работодатель в таком случае обязан соблюдать требования ч. 3 ст. 6 Закона о персональных данных, а именно3:
- взять письменное согласие работника на передачу его ПД третьему лицу;
- в поручении для третьего лица указать перечень возможных действий с переданными ПД, цели обработки, требования к защите обрабатываемых ПД;
- в поручении для третьего лица установить его обязанность соблюдать конфиденциальность ПД и обеспечивать безопасность ПД при их обработке.
Ни закон, ни разъяснения Роскомнадзора ничего не говорят о форме поручения. На практике под поручением понимается отдельное положение, включенное в текст договора с третьим лицом (согласно ч. 3 ст. 6 Закона о персональных данных). Например, такое поручение может содержать договор на оказание услуг.
Ответственность за нарушения закона: штраф для ИП – от 10 тыс. до 20 тыс. руб., для юрлиц – от 15 тыс. до 75 тыс. руб. (ч. 2 ст. 13.11 КоАП РФ).
И придется выплатить компенсацию морального вреда работнику, чьи права были нарушены.
Термин передача данных чаще касается цифровой информации, включая преобразованный аналоговый сигнал. Наука смотрит шире. Данными именуют любые качественные, количественные описания объекта. Эпичным примером считают сведения, составляемые антропологами касательно редких народностей планеты. Информация широко собирается организациями: продажи, преступность, безработица, грамотность.
Передача информации – цифровой поток бит.
Метаданные – более высокий уровень данных, описывающих другие данные.
Данные измеряют, собирают, передают, анализируют, представляют графиками, таблицами, изображениями, цифрами. Программистам известны так называемые рядовые файлы, лишенные форматирования. Сбойный раздел жесткого диска получает метку RAW. Форматирование упрощает передачу, восприятие сведений. Процесс оформления касается визуального, логического представления. Иногда информацию кодируют, обеспечивая защиту, восстановление сбойных участков.
Формат – способ представления информации.
Протокол – набор соглашений интерфейса, определяющий порядок обмена информацией.
Основная терминология
В этом разделе мы введем основные сетевые термины, необходимые для дальнейшего повествования.
Сеть — это совокупность цифровых устройств и систем, которые соединены друг с другом (физически или логически) и обмениваются данными. Элементами сети могут выступать серверы, компьютеры, телефоны, роутеры, умная лампочка с Wi-Fi и так до бесконечности. Размер сети может быть каким угодно — два соединенных кабелем устройства образуют сеть. Данные, передаваемые по сетям, оформляются в пакеты* — специальные блоки данных. За правила создания этих блоков отвечают соответствующие протоколы.
*Некоторые системы компьютерной связи не поддерживают пакетный режим передачи данных, например телекоммуникационная связь точка-точка. В них данные передаются просто в виде последовательности битов. Использование пакетного режима позволяет эффективнее распределять трафик между участниками сети.
Узел сети — это устройство, являющееся частью компьютерной сети. Узлы можно разделить на оконечные и промежуточные:
- Оконечные узлы — это узлы, которые отправляют и/или принимают какие-либо данные. Простыми словами, это устройства, которые являются получателем или источником информации.
- Промежуточные узлы — это узлы, которые соединяют оконечные узлы между собой.
Например, смартфон через Wi-Fi отправляет запрос к серверу. Смартфон и сервер — оконечные узлы, а Wi-Fi-роутер — это промежуточный узел. В зависимости от расположения узлов и их количества сеть можно классифицировать как:
- Глобальную. Сеть называют глобальной, если она охватывает весь мир. Например, всем знакомый интернет — это глобальная сеть.
- Локальную. Так говорят о сети, которая объединяет несколько устройств в рамках небольшого пространства. Если у вас дома есть Wi-Fi, то телефон, компьютер и ноутбук — это локальная сеть. А роутер (промежуточный узел) выполняет роль «мостика» к глобальной сети. Исключением из территориального критерия можно назвать сети космических устройств (орбитальных станций, спутников и т.п.).
- Распределенная. Это сеть, узлы которой территориально распределены.
Сетевая среда — это среда, в который осуществляется передача данных. Сетевой средой могут выступать провода, кабели, воздушная среда, оптоволокно. Если в качестве среды используется медная проволока, то данные передаются с помощью электричества. Если это оптоволокно, то для передачи данных используют световые импульсы. Если проводов нет, т.е. данные передаются с помощью беспроводных технологий, то используются радиоволны.
Основные механизмы передачи данных
Понятие передачи данных может быть связано с разными технологическими явлениями. В общем случае оно связано с индустрией компьютерных коммуникаций. Передача данных в этом аспекте — это обмен файлами (отправка, получение), папками и иными реализациями машинного кода.
Рассматриваемый термин может коррелировать также с нецифровой сферой коммуникаций. Например, трансляция ТВ-сигнала, радио, работа телефонных линий — если речь не идет о современных высокотехнологичных инструментах — может осуществляться посредством аналоговых принципов. В этом случае передача данных представляет собой трансляцию электромагнитных сигналов посредством того или иного канала.
Промежуточное положение между двумя технологическими реализациями передачи данных — цифровой и аналоговой — может занимать мобильная связь. Дело в том, что некоторые из технологий соответствующих коммуникаций относятся к первому типу — например, GSM-связь, 3G или 4G-интернет, другие характеризуются меньшей компьютеризированностью, и потому могут считаться аналоговыми — например, голосовая связь в стандартах AMPS либо NTT.
Однако современный тренд развития коммуникационных технологий таков, что каналы передачи данных, какого бы типа информация не передавалась посредством них, активно «оцифровываются». В крупных российских городах с трудом можно найти телефонные линии, функционирующие по аналоговым стандартам. Технологии, подобные AMPS, постепенно теряют актуальность и заменяются более совершенными. Цифровым становится ТВ и радио. Таким образом, мы вправе рассматривать современные технологии передачи данных главным образом в цифровом контексте. Хотя исторический аспект задействования тех или иных решений, безусловно, будет весьма полезно исследовать.
Современные системы передачи данных можно классифицировать на 3 основные группы: реализуемые в компьютерных сетях, используемые в мобильных сетях, являющиеся основой для организации трансляций ТВ и радио. Рассмотрим их специфику подробнее.
Характеристики компьютерных сетей передачи данных
Полезно будет изучить некоторые ключевые характеристики компьютерных сетей, в которых осуществляется обмен файлами. В числе важнейших параметров соответствующей инфраструктуры — пропускная способность. Данная характеристика позволяет оценить то, какими могут быть максимальные показатели скорости и объема передаваемых данных в сети. Собственно, оба указанных параметра также относятся к ключевым. Скорость передачи данных — это фактический показатель, отражающий то, какой объем файлов может направляться с одного компьютера на другой за установленный промежуток времени. Рассматриваемый параметр чаще всего выражается в битах в секунду (на практике, как правило, в кило-, мега-, гигабитах, в мощных сетях — в терабитах).
Каким образом передается информация
В процессе развития человечества происходит постоянное совершенствование механизмов, при помощи которых передаются сведения. Способы хранения и передачи информации довольно разнообразны, поскольку существует несколько систем, в которых происходит обмен данных.
В системе передачи данных различают 3 направления: это передача от человека к человеку, от человека к компьютеру и от компьютера к компьютеру.
- Первоначально сведения получают при помощи органов чувств — зрения, слуха, обоняния, вкуса и осязания. Для передачи информации на ближнем расстоянии существует язык, который позволяет сообщить полученные сведения другому человеку. Кроме того, передать что-либо другому человеку можно, написав письмо либо в процессе спектакля, а также при разговоре по телефону. Несмотря на то, что в последнем примере используется средство связи, то есть промежуточное устройство, оно позволяет передать сведения в непосредственном контакте.
- Для передачи данных от человека к компьютеру необходимо введение ее в память устройства. Информация может иметь разный вид, о чем будет идти разговор далее.
- Передача от компьютера к компьютеру происходит посредством промежуточных устройств (флеш-карты, интернета, диска и т. д.).
В конце 1990 года, когда появились первые предсказания исчерпания адресного пространства IPv4, Тематическая группа по технологии Интернет (Internet Engineering Task Force, IETF) инициировала работу над IP-протоколом нового поколения, названным IP Next Generation, IPng. (На сегодняшний день это синоним IPv6.) В ноябре 1994 года был утвержден, а в январе 1995 года официально опубликован проект [14], завершивший период концептуальных дискуссий и положивший начало реальной стандартизации IPv6. В этом документе сформулированы основные требования к IPv6 и методы достижения поставленных целей, как краткосрочных, так и долгосрочных.
Протокол IPv6 проектировался как преемник IPv4. Все, что в IPv4 было хорошо, должно остаться. Все, что не использовалось на практике, должно быть удалено. Недостатки, естественно, должны быть исправлены. В необходимых случаях функциональность IP должна быть расширена.
Важнейшие инновации IPv6 состоят в следующем:
- упрощен стандартный заголовок IP-пакета;
- изменено представление необязательных полей заголовка;
- расширено адресное пространство;
- улучшена поддержка иерархической адресации, агрегирования маршрутов и автоматического конфигурирования адресов;
- введены механизмы аутентификации и шифрования на уровне IP-пакетов;
- введены метки потоков данных.
В IPv6 сохранена архитектурная простота, присущая IPv4 и ставшая одной из главных составляющих феноменального успеха IP-сетей. Основные принципы остались прежними. Все изменения планировались таким образом, чтобы минимизировать изменения на других уровнях протокольного стека TCP/IP.
Размер IP-адреса увеличен до 128 бит (16 байт). Даже с учетом неэффективности использования адресного пространства, являющейся оборотной стороной эффективной маршрутизации и автоматического конфигурирования, этого достаточно, чтобы обеспечить объединение миллиарда сетей, как того требовали документы IETF. Любопытно отметить, что на предварительном этапе обсуждалось четыре предложения, касающиеся размера IP-адреса:
- 8 байт (этого в принципе достаточно, а более длинные адреса будут расходовать полосу пропускания);
- 16 байт (эта “золотая середина” в итоге победила);
- 20 байт (для унификации с OSI-сетями);
- адреса переменной длины (для снятия всех противоречий.
Поддержка классов обслуживания – одна из горячих тем современных сетевых технологий, и протокол сетевого уровня, такой как IPv6, должен предоставить основу для реализации подобной поддержки.
В спецификациях IPv6 [15] поддерживать классы обслуживания помогают два поля – Prio. и Flow Label (см. выше рис. 3). Первое задает желательную приоритетность доставки данного пакета относительно других пакетов из того же источника. Возможные приоритеты делятся на два диапазона. Значения от 0 до 7 используются для потоков данных, на интенсивность которых источник может воздействовать. TCP-трафик принадлежит к этой категории, поскольку при перегрузке сети скорость отправки пакетов снижается. Диапазон от 8 до 15 предназначен для трафика “реального времени”, интенсивность которого определяется внешними факторами.
Для управляемого трафика рекомендуется следующее распределение приоритетов:
0 – трафик неизвестной природы;
1 – трафик-”заполнитель” (например, сетевые новости);
2 – неинтерактивный трафик (например, электронная почта);
4 – массовый интерактивный трафик (например, передача файлов по FTP или NFS);
6 – обычный интерактивный трафик (например, telnet, X);
7 – управляющий трафик (например, протоколы маршрутизации, SNMP) (значения 3 и 5 зарезервированы).
Во втором диапазоне младшие значения (8) предлагается отвести для пакетов, с недоставкой которых при перегрузке сети отправитель готов смириться легче всего. Соответственно, приоритет 15 присваивается самым ценным пакетам, которые желательно доставить при любых условиях.
Поток, который помечается с помощью поля Flow Label, определяется как последовательность пакетов, посылаемых из определенного источника по определенному адресу (индивидуальному или групповому) с фиксированным приоритетом. Требуемый класс обслуживания может сообщаться маршрутизаторам посредством какого-либо управляющего протокола или с помощью данных, содержащихся в самих передаваемых пакетах (точнее, в дополнительных заголовках, обрабатываемых маршрутизаторами). Предполагается, что значение Flow Label используется как ключ хэширования при поиске информации, ассоциированной с потоком. По этой причине источник должен выбирать его псевдослучайным образом.
В настоящее время в поддержке классов обслуживания (не только для IPv6) больше вопросов, чем ответов. Ясно только, что ориентированные на практический выход экспериментальные подходы должны быть применимы и к IPv6, и к IPv4. В заголовке IPv4 имеется однобайтное поле Type of Service, которое целесообразно использовать для задания класса обслуживания.
Вероятно, из-за этого в новом проекте спецификаций IPv6 (см. [24]) граница между полями Prio. и Flow Label сдвинута на четыре бита вправо, вместо Prio. применяется термин “Traffic Class”, а само начало заголовка выглядит так, как показано на рис. 19.
В то же время, в трактовке полей Traffic Class и Flow Label не только не добавляется что-то новое, но и делается шаг назад по сравнению с [15]. Признается, что пока рано говорить о семантике этих полей, поскольку работы по поддержке классов обслуживания в рамках IP-протокола находятся на начальной стадии. С этим выводом нельзя не согласиться.
Какие ещё протоколы используются в Интернете
Помимо выше указанных, для сети существуют и другие решения. У каждого свои особенности:
- MAC, или Media Access Control отвечает за идентификацию устройств в Сети на одном из самых низких уровней. Уникальным MAC-адресом снабжается каждое приспособление, которое подключается к Сети. Эту информацию задаёт ещё производитель. Физические адреса используются в случае с локальными сетями, по которым передают сведения. Это один из немногих протоколов, до сих пор остающийся достаточно популярным.
- DNS — протокол для передачи файлов. Отвечает за преобразование в сложные IP-адреса данных, которые раньше были легко понятны и читаемы. Обратный порядок преобразования тоже работает. Благодаря этому становится просто получать доступ к сайтам с помощью доменного имени.
- SSH реализуется для удалённого управления системой с участием защищённого канала. Этот вариант для работы используют многие технологии.
Важно! При выборе того или иного метода отталкиваться нужно от того, для чего предназначен тот или иной элемент. Одинаковым остаётся способ настройки в разных операционных системах. Только в некоторых специализированных компонентах заметно отличие.
Системы Windows изначально были настроены так, чтобы в качестве универсального протокола использовать TCP/IP. Все остальные функции не настраиваются вообще либо настраиваются, но автоматически.
Чёткая определённость и структурированность — главные условия для организации правильного обмена информацией по Сети между компьютерами. По этой причине применяются различные стандарты. Первоначально для установки протоколов использовались международные соглашения. Различные задачи, типы информации, протоколы могут быть разными в зависимости от того, что нужно пользователям или самим сетям.
Типы передачи данных. Что такое цифровая подстанция и зачем там нужен multicast
Прежде, чем заговорить про ЛВС цифровой подстанции, нужно разобраться, что такое цифровая подстанция, а потом ответить на вопросы:
- Кто участвует в передаче данных?
- Какие данные передаются в ЛВС?
- Какая типовая архитектура ЛВС?
И уже после этого обсуждать multicast.
Цифровая подстанция — это подстанция, все системы которой имеют очень высокий уровень автоматизации. Все вторичное и первичное оборудование такой подстанции ориентировано на цифровую передачу данных. Обмен данными выстраивается в соответствии с протоколами передачи, описанными в стандарте МЭК 61850. Соответственно, в цифровом виде здесь передаются все данные:
- Измерения.
- Диагностическая информация.
- Команды управления.
Этот тренд получил очень большое развитие в российской энергетике и сейчас повсеместно внедряется. В 2019 и 2020 году появилось очень много нормативных документов, регулирующих создание цифровой подстанции на всех этапах разработки. Например, СТО 34.01-21-004-2019 ПАО «Россети» определяет следующее определение и критерии ЦПС:
Цифровая подстанция — автоматизированная подстанция, оснащенная взаимодействующими в режиме единого времени цифровыми информационными и управляющими системами и функционирующая без присутствия постоянного дежурного персонала.
Критерии:
- дистанционная наблюдаемость параметров и режимов работы оборудования и систем, необходимых для нормального функционирования без постоянного присутствия дежурного и обслуживающего эксплуатационного персонала;
- обеспечение телеуправления оборудованием и системами для эксплуатации ПС без постоянного присутствия дежурного и обслуживающего эксплуатационного персонала;
- высокий уровень автоматизации управления оборудованием и системами с применением интеллектуальных систем управления режимами работы оборудования и систем;
- дистанционная управляемость всеми технологическими процессами в режиме единого времени;
- цифровой обмен данными между всеми технологическими системами в едином формате;
- интегрированность в систему управления электрической сетью и предприятием, а также обеспечение цифрового взаимодействия с соответствующими инфраструктурными организациями (со смежными объектами);
- функциональная и информационная безопасность при цифровизации технологических процессов;
- непрерывный мониторинг состояния основного технологического оборудования и систем в режиме онлайн с передачей необходимого объема цифровых данных, контролируемых параметров и сигналов.
Какие ещё протоколы используются в Интернете
Помимо выше указанных, для сети существуют и другие решения. У каждого свои особенности:
- MAC, или Media Access Control отвечает за идентификацию устройств в Сети на одном из самых низких уровней. Уникальным MAC-адресом снабжается каждое приспособление, которое подключается к Сети. Эту информацию задаёт ещё производитель. Физические адреса используются в случае с локальными сетями, по которым передают сведения. Это один из немногих протоколов, до сих пор остающийся достаточно популярным.
- DNS — протокол для передачи файлов. Отвечает за преобразование в сложные IP-адреса данных, которые раньше были легко понятны и читаемы. Обратный порядок преобразования тоже работает. Благодаря этому становится просто получать доступ к сайтам с помощью доменного имени.
- SSH реализуется для удалённого управления системой с участием защищённого канала. Этот вариант для работы используют многие технологии.
Краткая характеристика технологий
Приведем краткую характеристику технологий беспроводной передачи данных, а затем осуществим их сравнительный анализ. Традиционно в данной области телекоммуникаций (и не только здесь) конкурируют американские стандарты IEEE, европейские стандарты ETSI и фирменные стандарты.
Технология ZigBee продвигается организацией ZigBee Alliance, ставящей своей целью обеспечение верхних слоев семиуровневой модели стеком протоколов (от сетевого уровня до уровня приложений), включая профили приложений и инженерную реализацию компонентов данной технологии. К разработке соответствующего стандарта низкоскоростной передачи данных подключился комитет IEEE 802.15.4, разрабатывающий уровни MAC (управление доступом к среде передачи — media access control) и PHY (уровень передачи сигналов в физической среде) семиуровневой модели. Именно первый,физический уровень (PHY) в основном определяет стоимость системы, скорости передачи данных, потребляемую мощность, габариты и диапазон используемых частот.
Назначение данной технологии — обеспечить компонентами системы автоматизации и дистанционного управления различного назначения. При этом для АТ была поставлена цель обеспечения их автономным батарейным питанием двумя элементами типа АА в течение времени от полугода до двух лет. Варианты применения устройств, построенных на основе данной технологии: беспроводные системы обеспечения безопасности жилища от несанкционированного проникновения в них; удаленное управление кондиционерами, системой освещения помещений и оконными жалюзи; управление какими-либо устройствами инвалидами, пожилыми людьми и детьми; универсальное управление аудио и видеоустройствами; беспроводные клавиатура, мышь ПК, пульт управления игровой приставкой; беспроводные детекторы задымления и наличия СО; автоматизация и управление элементами промышленных и жилых помещений (освещением и т.п.).
Предусматривается разработка шлюзов для взаимодействия данных систем с другими сетями передачи данных.
Используемые частоты: ISM (2,4 ГГц со скоростью 250 кбит/с), европейский диапазон 868 МГц (20 кбит/с) и американский диапазон 915 МГц (40 кбит/с).
Технология Bluetooth — это технология передачи данных по радио на малые расстояния (до 10 м, с возможностью расширения до 100 м), позволяющая осуществлять связь беспроводных телефонов, компьютеров и различной периферии, не требуя прямой видимости. По мощности радиопередатчика аппаратура делится на три класса: первый (максимальная выходная мощность 100 мВт), второй (2,5 мВт) и третий (1 мВт).
Разработку технологии начала компания Ericsson Mobile Communications. Первоначальной ее целью было получение нового радиоинтерфейса с низким уровнем энергопотребления и невысокой стоимостью, который позволил бы устанавливать связь между сотовыми телефонами и гарнитурами. Кроме того, новый интерфейс предназначался для передачи данных между ПК, между ПК и его периферией, между ноутбуком и сотовым телефоном и т.п.
В феврале 1998 года. Ericsson совместно с Intel, IBM, Toshiba и Nokia сформировали специальную группу по разработке и продвижению технологии под названием Bluetooth SIG (Special Interest Group). Эта технология полностью открыта, а поэтому любая компания, подписавшая лицензионное соглашение, может войти в состав Bluetooth SIG и начать создавать продукты на ее основе.
Семейство стандартов IEEE 802.11х разрабатывается американским институтом IEEE. Стандарт IEEE 802.11, разработка которого была завершена в 1997 г., является базовым стандартом и определяет протоколы, необходимые для организации беспроводных локальных сетей (WLAN). Основные из них — протокол управления доступом к среде MAC (нижний подуровень канального уровня) и протокол PHY передачи сигналов в физической среде. В качестве последней допускается использование радиоволн и инфракрасного излучения. Стандартом 802.11 определен единственный подуровень MAC, взаимодействующий с тремя типами протоколов физического уровня, соответствующих различным технологиям передачи сигналов — по радиоканалам в диапазоне 2,4 ГГц с широкополосной модуляцией с прямым расширением спектра (DSSS) и ППРЧ (FHSS), а также с помощью инфракрасного излучения. Спецификациями стандарта предусмотрены два значения скорости передачи данных — 1 и 2 Мбит//с. По сравнению с проводными ЛВС Ethernet-возможности подуровня MAC расширены за счет включения в него ряда функций, обычно выполняемых протоколами более высокого уровня, в частности, процедур фрагментации и ретрансляции пакетов. Это вызвано стремлением повысить эффективную пропускную способность системы благодаря снижению накладных расходов на повторную передачу пакетов.
В качестве основного метода доступа к среде стандартом 802.11 определен механизм CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance — множественный доступ с обнаружением несущей и предотвращением столкновения пакетов).
Управление питанием. Для экономии энергоресурсов мобильных рабочих станций, используемых в беспроводных ЛВС, стандартом 802.11 предусмотрен механизм переключения станций в так называемый пассивный режим с минимальным потреблением мощности.
Архитектура и компоненты сети. В основу стандарта 802.11 положена сотовая архитектура,причем сеть может состоять как из одной, так и нескольких ячеек. Каждая сота управляется базовой станцией, являющейся ТД, которая вместе с находящимися в пределах радиуса ее действия рабочими станциями пользователей образует базовую зону обслуживания. Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему, представляющую собой эквивалент магистрального сегмента кабельных ЛВС. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания. Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняются непосредственно рабочими станциями.
Роуминг. Для обеспечения перехода мобильных рабочих станций из зоны действия одной точки доступа к другой в многосотовых системах предусмотрены специальные процедуры сканирования (активного и пассивного прослушивания эфира) и присоединения (Association), однако строгих спецификаций по реализации роуминга стандарт 802.11 не предусматривает.
Обеспечение безопасности. Для защиты WLAN стандартом IEEE 802.11 предусмотрен целый комплекс мер безопасности передачи данных под общим названием Wired Equivalent Privacy (WEP). Он включает средства противодействия несанкционированному доступу к сети (механизмы и процедуры аутентификации), а также предотвращение перехвата информации (шифрование).
Термин передача данных чаще касается цифровой информации, включая преобразованный аналоговый сигнал. Наука смотрит шире. Данными именуют любые качественные, количественные описания объекта. Эпичным примером считают сведения, составляемые антропологами касательно редких народностей планеты. Информация широко собирается организациями: продажи, преступность, безработица, грамотность.
Передача информации – цифровой поток бит.
Метаданные – более высокий уровень данных, описывающих другие данные.
Данные измеряют, собирают, передают, анализируют, представляют графиками, таблицами, изображениями, цифрами. Программистам известны так называемые рядовые файлы, лишенные форматирования. Сбойный раздел жесткого диска получает метку RAW. Форматирование упрощает передачу, восприятие сведений. Процесс оформления касается визуального, логического представления. Иногда информацию кодируют, обеспечивая защиту, восстановление сбойных участков.
Формат – способ представления информации.
Протокол – набор соглашений интерфейса, определяющий порядок обмена информацией.
Список книг помогающих разобраться в аналоговых и цифровых сигналах
Более подробно изучить и сравнить принципы обработки и передачи данных можно прочитав следующую литературу:
- Сато Ю. Обработка сигналов. Первое знакомство. / Пер. с яп.; под ред. Ёсифуми Амэмия. — М: Изд-кий дом «Додэка-XXI», 2002. Книга даёт основы знаний о способах ЦОС. Адресована радиолюбителям, студентам и школьникам, только начинающим изучение систем передачи данных.
- Введение в цифровую фильтрацию /под ред. Р. Богнера и А. Константинидиса; перевод с англ. — М: Изд-во «Мир», 1977. В этой книге популярно и доступно изложена информация о различных системах обработки данных. Сравниваются аналоговая и цифровая системы, описаны плюсы и минусы.
- Основы цифровой обработки сигналов: Курс лекций /Авторы: А.И. Солонина, Д.А. Улахович, С.М. Арбузов, Е.Б. Соловьев, И.И. Гук. — СПб: Изд-во «БХВ-Петербург», 2005. Книга написана по курсу лекций для студентов ГУТ им. Бонч-Бруевича. Изложены теоретические основы обработки данных, описаны дискретные и цифровые системы разных способов преобразования. Предназначена для изучения в вузах и повышения квалификации специалистов.
- Сергиенко А.Б. Цифровая обработка сигналов (второе издание) — СПб: Изд-во «Питер», 2006. Электронный учебно-методический комплекс по дисциплине «Цифровая обработка сигналов». Представлены курс лекций, лабораторный практикум и методические рекомендации по самостоятельной работе. Предназначена для преподавателей и самостоятельного изучения для студентов уровня подготовки бакалавр.
- Лайонс Р. Цифровая обработка сигналов. 2-е изд. Пер. с англ. – М.: ООО «Бином-Пресс», 2006. Книга представляет подробную информацию о ЦОС. Написана понятным языком и снабжена большим количеством иллюстрации. Одна из самых простых и понятных книг на русском языке.
Старая добрая аналоговая связь быстро сдаёт позиции. Несмотря на модернизацию и улучшения, возможность обмена данными достигла предела. К тому же, остались старые болезни – искажения и шумы. В то же время цифровая связь лишена этих недостатков, и передаёт большие объёмы информации быстро, качественно, без ошибок.